

(AUTONOMOUS)

AFFILATED TO

SWAMI RAMANAND TEERTH MARATHWADA UNIVERSITY, NANDED

B. Sc. GENERAL (SEMESTER PATTERN)

B. Sc. FIRST YEAR (CBCS)

BOTANY – CURRICULUM

UNDER ACADEMIC AUTONOMOUS STATUS 2013 - 2024

(MCQ + Theory Pattern)

w. e. f. JUNE, 2021

OBJECTIVES

- 1. To know the importance and scope of the discipline.
- 2. To Inculcate interest in and love of nature with its myriad living forms.
- 3. To Impart knowledge of Science as the basic objective of Education.
- 4. To develop a scientific attitude to make students open minded, critical and curious.
- 5. To develop an ability to work on their own and to make them fit for the society.
- 6. To expose themselves to the diversity amongst life forms.
- 7. To develop skill in practical work, experiments, equipments and laboratory use along

with collection and interpretation of biological materials and data.

- 8. To Make aware of natural resources and environment and the importance of conserving it.
- 9. To develop ability for the application of the acquired knowledge in the fields of life so as
 - to make our country self reliant and self sufficient.
- 10. To Appreciate and apply ethical principles to biological science research and studies.
- 11. To enable the students to face NET, SET examinations.
- 12. To enable the students to face MPSC, UPSC and other competitive examinations successfully.

RAJARSHI SHAHU MAHAVIDYALAYA, LATUR (AUTONOMOUS) B. Sc. GENERAL (SEMESTER PATTERN)

B. Sc. FIRST YEAR (CBCS)

BOTANY – CURRICULUM

(MCQ Pattern + Theory Pattern)

		Period /		Marks		Credits	
Semester	Paper No. & Title	practical	In Sem. Evaluation	End Sem. Evaluation	Total		
	Theory Paper-I: Biodiversity of Cryptogams and Gymnosperms	45	20	30	50	02	
Semester-I	Theory Paper-II: Cell biology and Molecular biology	45	20	30	50	02	
	Lab course -I: Practical bases on theory papers -I&II	24			50	02	
	Theory Paper-III: Histology Anatomy and Embryology of Angiosperms	45	20	30	50	02	
Semester-II	Theory Paper-IV: Fundamentals of Genetics	45	20	30	50	02	
	Lab course -II:-: Practical based on theory papers -III&IV	24			50	02	
					300	12	12

Workload:

1. Theory: Three Lectures / Paper / Week.

2. Practical: One practical (Three Lectures) / Batch / Week

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur

B. Sc. General (Semester Pattern)

B. Sc. Second Year (CBCS)

Botany – Curriculum

(MCQ + Theory Pattern)

Seme ster	Paper No.	Paper Title	Course Code	Marks		Total Marks	Lectures/ Practicals	Cre dits
ster			Coue	In Sem. Evaluation	End Sem. Evaluation		Flacticals	ults
	v	Morphology and Taxonomy of Angiosperms	U-BOT- 367	20	30	50	45	02
III	VI	Economic Botany and Pharmacognosy /NPTEL Course on Genetic Engineering	U-BOT- 368	20	30	50	45	02
	Lab. Course III	Based on theory paper –V	U-BOT- 369			50	24	02
	Lab. Course IV	Based on theory paper –VI	U-BOT- 370			50	24	02
	SEC-I	Nursery and Floriculture	U-ADC- 334N		50	50	45	02
	VII	Environmental Biology; Gardening and Land Scaping	U-BOT- 467	20	30	50	45	02
IV	VIII	Plant Breeding and Biotechnology	U-BOT- 468	20	30	50	45	02
	Lab. Course- V	Based on theory paper –VII	U-BOT- 469			50	24	02
	Lab. Course- VI	Based on theory paper –VIII	U-BOT- 470			50	24	02
	SEC-II	Mushroom Cultivation Techniques	U-ADC 434M		50	50	45	02
					Total	500		20

Workload:

1. Theory: Three Lectures / Paper / Week.

2. Practical: One practical (Three Lectures) / Batch / Week

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur

B. Sc. General (Semester Pattern)

B. Sc. Third Year (CBCS)

Botany – Curriculum

(MCQ + Theory Pattern)

Seme ster	Paper No.	Paper Title	Course Code	Marks		Lectures/ Practicals	Total Marks	Credits
ster			Coue		1	Flacticals	IVIALKS	
				In Sem.	End Sem.			
				Evaluation	Evaluation			
		Plant Physiology and	U-BOT-583					
	IX	Metabolism		20	30	45	50	02
V	Х	Plant Pathology-I/Plant	U-BOT-584					
		Biotechnology (DSE)		20	30	45	50	02
	Lab Course-VII	Based on theory	U-BOT-585					
		Paper – IX				24	50	02
	Lab Course-	Based on theory	U-BOT-586					
	VIII	Paper – X				24	50	02
	SEC-III	Fruits and Fruit	U-ADC-		50	45	50	02
		Processing	540F					
	XI	Plant Biochemistry and	U-BOT-683	20	30	45	50	02
		Bioinformatics						
VI	XII	Plant Pathology-II /	U-BOT-684	20	30	45	50	02
		Cytogenetics (DSE)						
	Lab Course -IX	Based on theory	U-BOT-685			24	50	02
		Paper –XI& XII						
	Lab Course- X	Based on theory	U-BOT-686			24	50	02
		Paper –XI& XII						
	SEC-IV	Basics in Horticulture	U-ADC-		50	45	50	02
			640H					
					Total		500	20

Workload:

1. Theory: Three Lectures / Paper / Week.

2. Practical: One Practical (Three Lectures) / Batch / Week

Chairman

(AUTONOMOUS)

B. Sc. GENERAL (SEMESTER PATTERN)

B. Sc. FIRST YEAR (CBCS)

BOTANY – CURRICULUM

(MCQ Pattern + Theory Pattern)

G (Period /		Marks		Credits
Semester	Paper No. & Title	practical	In Sem. Evaluation	End Sem. Evaluation	Total	
	Theory Paper-I: Biodiversity of Cryptogams and Gymnosperms	45	20	30	50	02
Semester-I	Theory Paper-II: Cell biology and Molecular biology	45	20	30	50	02
	Lab course -I: Practical bases on theory papers -I&II	24			50	02
	Theory Paper-III: Histology Anatomy and Embryology of Angiosperms	45	20	30	50	02
Semester-II	Theory Paper-IV: Fundamentals of Genetics	45	20	30	50	02
	Lab course -II:-: Practical based on theory papers -III&IV	24			50	02
					300	12

Workload:

1. Theory: Three Lectures / Paper / Week.

2. Practical: One practical (Three Lectures) / Batch / Week

(AUTONOMOUS)

B. Sc. First Year Semester – I (MCQ + Theory Pattern)

BOTANY

Theory Paper-I: Biodiversity of Cryptogams and Gymnosperms

Periods – 45 Maximum Marks – 50 Credits-02 Course code U-BOT-159

OBJECTIVES

- 1. To awaken the students about microbial world and the nature of diseases of plants.
- 2. To understand the principles and concept in plant pathology.
- 3. To understand the relationships between pathogens and plants.
- 4. To become familiar with algae and bryophytes
- 5. To develop the awareness about the importance of Viruses, Bacteria, Fungi, Lichens, Algae, Bryophytes, Pteridophytes
- 6. To learn the life cycles of, Fungi, Lichens, Algae, Bryophytes, Pteridophytes

Course outcomes:

- 1) Students are able to classify microorganism on the basis of host.
- 2) Able to distinguish between reproductive stages of cryptogams.
- 3) Able to study systematic position, thallus and occurrence of algae.

UNIT - I: BACTERIA AND VIRUSES (10 L)

BACTERIA:

- 1. General characters.
- 2. Size, Shape and Ultra structure.
- **3.** Reproduction
- **4.** Economic importance.

VIRUSES:

- **1.** General characters.
- **2.** Ultra structure of TMV.
- 3. Economic importance.

UNIT – II: FUNGI (12 L)

- 1. General characters and Classification (Alexopolous and Mims, 1979).
- 2. Reproduction and graphic life cycle of *Erysiphe*.
- 3. Economic importance.
- 4. Mycorhiza (General characters)
- 5. Lichens: General characters, Types and Economic importance.

UNIT – III: ALGAE AND BRYOPHYTES (10 L)

ALGAE:

- 1. General characters.
- 2. Classification (F.E.Fritsch, 1935).
- 3. Reproduction and graphic life cycle of Chara.

BRYOPHYTES:

- **1.** General characters.
- 2. Classification (N.S.Parihar).
- **3.** Reproduction, and graphic life cycle of (Developmental stages not expected) *Funaria*.

UNIT – IV: PTERIDOPHYTES AND GYMNOSPERMS (13 periods)

PTERIDOPHYTES:

- **1.** General characters.
- **2.** Classification (N.S.Parihar)

3. Reproduction and graphic life cycle with alternation of generations of (Developmental stages not expected) *Nephrolepis* (fern).

GYMNOSPERMS:

- **1.** General characters.
- 2. Classification (Arnold, 1948).
- **3.** Morphology of vegetative and reproductive structures (Developmental stages are not expected), and life cycle of *Cycas*.

Reference Books:

- 1. Trivedi, A. N. (2002) Advances in Pteridology
- 2. Bierhorst, D.W. (1971) Morphology of Vascular plants
- 3. Eames, A. J. and E. M. Giffard (1950) Comparative morphology of vascular plants.
- 4. Rashid, A. (1978) An introduction to Pteridophytes.
- 5. Sporne, K.R. (1966) Morphology of Pteridophytes.

- 6. Bower, F. O. (1963) The Ferns.
- 7. Jermy, A. G. (1973) The Phylogeny and Classification of ferns.
- 8. Vashishta, B.R. (1996) Botany for degree students Pteridophytes.
- 9. Parihar, N.S. (1959) An Introduction to Pteridophyta.
- 10. Arnold, C.A. (1972) An introduction to paleobotany.
- 11. Darroh, W.C. (1968) Principles of paleobotany.
- 12. Surange, K.R. (1968) Indian Fossil Pteridophytes.
- 13. Arnold, C.A. (1947): Introduction to Palaeobotany, Mc-Graw HillBook Co. Inc., New York and London.
- 14. Pteridophytes and Gymnosperms, springer Verlag, New York
- 15. Agashe, S.N. (1995), Palaeobotany, Oxford & IBH, New Delhi.
- 16. Biswas, C & Johri, B.N. (2004), The Gymnosperms, Narosa

Publishing House, New Delhi.Coulter J.M. & Chamberlain C.J.(1978): Morphology of

- 17. Gymnosperms, Central Book Depot, Allahabad.
- 18. Kakkar, R.K.and Kakkar, B.R. (1995), The Gymnosperms (Fossils& Living), Central Publishing House, Allahabad.
- 19. Sharma O.P. (2002) Gymnosperms, Pragati Prakashan, Meerut.
- 20. Vashishta P.C., A.R. Sinha, Anil Kumar. 2006. Gymnosperms. S.Chand.
- 21. Vashishta P.C. 2006. Pteridophytes. S. Chand.
- 22. Parihar N.S. 1996. Biology and Morphology of Pteridophytes. Central Book Depot, Allahabad.

(AUTONOMOUS)

B. Sc. First Year Semester – I (MCQ + Theory Pattern)

BOTANY

Theory Paper- II: Cell and Molecular BiologyPeriods – 45Maximum Marks – 50Credits : 02Course code: U-BOT-160

OBJECTIVES

- 1. To acquire good knowledge about cell biology
- 2. To acquire good knowledge about chemistry of active constituents of medicinal plants.
- 3. To know the techniques of Molecular biology.
- 4. Identification of different stages of cell division

Course outcomes

- 1) Students are able to karyotype and Idiogram and their significance.
- 2) Able to distinguish between mitotic & meiosis.
- 3) They are able to justify structural aspect of DNA & RNA.

UNIT –I: CELL BIOLOGY (13 L)

- 1. Cell: Ultra structure of Prokaryotic cell and Eukaryotic cell.
- 2. Structure and functions of: Cell wall and Plasma membrane.
- **3. Structure and functions of cell organelles:** Nucleus, Golgi apparatus, Endoplasmic reticulum and Ribosome.

UNIT –II: CHROMOSOME (10 L)

- 1. Organization of Chromosome (Nucleosome Solenoid Model).
- 2. Morphology, structure and function of typical chromosome.
- **3.** Types of chromosome.
- 5. Chromosomal Aberrations (structural and numerical).

UNIT –III: CELL DIVISION (10 L)

- 1. Cell cycle: Inter phase G₁ S G₂-M phase and G0 phase
- 2. Phages and significance of Mitosis.
- 3. Phages and significance of Meiosis.

UNIT -IV: MOLECULAR BIOLOGY (12 L)

- 1. Structure of DNA (Watson and Crick model).
- **2.** Replication of DNA.
- 3. Structure, function and types of RNA.
- **4.** Protein synthesis.

Reference Books:

- 1. Albert's B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J. D. 1989
- 2. Molecular biology of the Cell (2ndedition). Garland Pub. Inc., New York.
- 3. Karp, G. 1999. Cells and Molecular Biology: Concepts & Experiments. John Wiley and Sons, Inc., USA.
- 4. Lodish S, Baltimore B, Berk, C and Lawrence K, 1995, Molecular Cell Biology, 3rd editions, Scientific American Books, N.Y
- 5. De Robertis and De Robertis, 1988, Cell and Molecular Biology, 8 edition, Info-Med, Hongkong.
- 6. Buchanan, Grissem and Jones, 2000, Biochemistry and Molecular Biology of Plants, American Soc. Plant Biologists, Waldorf
- Lewin, B. 2000. GENE VII. Oxford University Press, New York, USA Cooper G M and Hausman R E,2007, The Cell: Molecular Approach 4thEdn, Sinauer Associates, USA. Johnson Lewys – 2004: Cell Biology; Sarup and sons, New Delhi
- 8. E.J. Dupraw 1970 : Cell and Molecular Biology; Academic Press, London
- De Robertis and De Robertis 1997: Cell and Molecular Biology (VIII); B.I. Waverly Pvt. Ltd., New Delhi
- C. P. Swanson, T. Merz, and W.J. Young 1982 : Cytogenetics ; Prentice Hall of India Pvt. Ltd., New Delhi India
- 11. C. B. Powar 1992: Cell Biology; Himalaya Publishing House.

(AUTONOMOUS)

B. Sc. First Year Semester – I (MCQ + Theory Pattern)

BOTANY

Practical Paper-III: Practical based on theory papers -I&II

Periods – 45 Maximum Marks – 50 Credits-02 Course code U-BOT-161

Course outcomes

- 1) Students are able to identify the different microbes.
- 2) Students are able to identify the different types of algae, bryophyte etc.
- Students are able to understand that the number of chromosome is characteristic of each species and can vary enormously between species.
- Students are able to recognize that genetics is based on concept of genes as unit of inheritance.
- **Practical 1:** Study of forms of Bacteria.
- Practical 2: Study of external features of *Chara*.
- **Practical 3:** Study of external features of *Erysiphe with* classification.
- **Practical 4:** Study of types of **Lichens (Crustose, Foliose and Fructicose).**
- Practical 5: Study of external and internal features of *Funaria*.
- **Practical 6:** Study of external and internal features of *Nephrolepis*.
- **Practical 6:** Study of external, internal and reproductive features of *Cycas*.
- **Practical 8:** Study of cell organelles with the help of photocopies / slides

- **Practical** 9: Study of mitosis (Onion/Garlic Root tips).
- Practical 10: Study of Mitotic index (Onion/Garlic Root tips).
- **Practical** 11-12: Study of Meiosis from onion floral buds or any other available material.
- **Practical** 13: Study of karyotype and ideogram from photocopies of onion / Aloe plant material.
- **Practical 14: Botanical excursions (one short excursion is compulsory)**

(AUTONOMOUS)

B. Sc. First Year Semester – II BOTANY

Theory Paper-III: Histology, Anatomy and Embryology of Angiosperms

Periods – 45 Maximum Marks – 50 Credits: 02 Course code: U-BOT-260

OBJECTIVES

- 1. To awaken the students about Tissue system of of plants.
- 2. To understand the process and concepts in plant Embryology.
- 3. To understand the relationships between pathogens and plants.
- 4. To become familiar with histology and anatomy of plants
- 5. To learn the internal structures of plant organs.

Course outcomes:

- 1) Able to differentiate various tissues.
- 2) They are able to perform sectioning of various ovules.
- 3) Developed approach for embryology study.

UNIT – I: HISTOLOGY

Plant Tissues(12 L)A. Meristematic tissues and theirclassification based on positionB.Permanent TissuesII Simple Tissues:I1. ParenchymaZ2. CollenchymaZ3. SclerenchymaII Complex Tissues1. Xylem2. PhloemIII Secretary Tissues1. Laticiferous TissuesEx. Latex cells

2. Glandular Tissues

a. External glands

Ex. Digestive glands

- **b.** Internal glands
 - Ex. Oil glands

UNIT – II: ANATOMY (12 periods)

- **1.** Anatomy of dicot Stem (Sunflower).
- **2.** Anatomy of monocot Stem (Maize).
- **3.** Secondary growth in dicot stem.
- 4. Leaf anatomy of dicotyledons (Sunflower) and monocotyledons (Maize).
- 5. Anomalous secondary growth in Dracaena stem.

UNIT -III: EMBRYOLOGY -I (11 periods)

- 1 Structure of a Microsporangium (T.S. of anther).
- **2.** Structure of a Microspore.
- 3. Development of male gametophyte (Microgametogenesis).
- 4. Structure of a Megasporangium.
- 5. Anatropous ovule
- 6. Types of ovule.
- 7. Development of female gametophyte (Monosporic).

UNIT – IV: EMBRYOLOGY –II (10 L)

- **1.** Fertilization.
- **2.** Post fertilization changes.
- **3.** Endosperm and its types.
- 4. Development of dicot embryo (Crucifer type).
- **5.** Structure of Dicot seed.
- 6. Structure of Monocot seed.

References:

- 1. Briggs David 2009. Plant microevolution and Conservation in Human-influenced
- 2. *Ecosystems*.Cambridge University Press.
- 3. Cronquist, A. 1981. An Integrated System of Classification of Flowering Plants
- 4. Columbia University Press, New York.
- 5. Cronquist, A. 1988. The Evolution and Classification of Flowering Plants (2nded.) Allen
- 6. Press, U.S.A.
- 7. Davis, P. H. and V. H. Heywood 1991. Principles of Angiosperm Taxonomy. Today and
- 8. Tomorrow Publications, New Delhi.
- 9. Hutchinson, J. 1959. Families of Flowering plants.
- 10. Judd W. S., Campbell, C. S., Kellogg, E. A., Stevens P. F. and M. J. Donoghue

- 11. 2008. Plant Systematics: A phylogenetic Approach. Sunderland, Massachusetts,
- 12. USA.
- 13. Lawrence George H. M. 195.1 Taxonomy of Vascular Plants. Oxford and IBH Publ. Co.
- 14. Pvt. Ltd. New Delhi.
- 15. Leadlay E. and S. Jury (ed.) 2006. Taxonomy and Plant conservation. Cambridge
- 16. University Press.
- 17. Manilal, K. S. and M. S. Muktesh Kumar [ed.] 1998. A Handbook of Taxonomic
- 18. Training. DST, New Delhi.
- 19. Naik, V. N. 1984. Taxonomy of Angiosperms. Tata McGraw-Hill Publication Com. Ltd.
- 20. New Delhi
- 21. Quicke, Donald, L. J. 1993. Principles and Techniques of Contemporary
- 22. Taxonomy. Blakie Academic & Professional, London
- 23. Takhtajan, A. 1962. Flowering plants- Origin and Dispersal.
- 24. Taylor, D. V. and L. J. Hickey 1997. Flowering Plants: Origin, Evolution and
- 25. Phylogeny.CBS Publishers & Distributers, New Delhi.

(Autonomous)

B. Sc. First Year Semester – II BOTANY

Theory Paper-V: Fundamentals of GeneticsPeriods - 45Maximum Marks - 50Credits: 02Course code: U-BOT-261

- 1. To awaken the students about genetic terms
- 2. To understand the principles of genetics and laws of inheritance.
- 3. To understand the relationships between epistatic and non epistatic genes.
- 4. To develop the awareness about genetic disorders

Course outcomes:

- 1) Developed understanding about inheritance Biology.
- 2) Solved problems independently on Genetic disorder.
- 3) Able to understood Gene related diseases & its control.

UNIT –I: MENDELISM (10 L)

- **1.** Mendel's experiments (biography)
- 2. Genetic terminologies
- **3.** Explanation and examples of (monohybrid cross, dihybrid cross and back cross and test cross)
- 4. Mendel's Laws of Inheritance.

UNIT –II: GENE INTERACTIONS (12 L)

- A. Allelic interactions: Explanation and examples of Incomplete dominance, Co- dominance
 - (4 '0'clock plant inheritance of coat color in cattle)
- B. Non-Allelic interactions
 - I. Epistatic: Explanation and examples of
 - a. Dominant epistasis 12:3:1
 - b. Recessive epistasis 9:3:4 (Supplementary gene)
 - c. Duplicate dominant epistasis 15:1
 - d. Duplicate recessive epistasis 9:7 (Complementary gene)
- II. Non-epistatic: Explanation and examples of
 - a. Collaborator gene 9:3:3:1 (Comb shape in fowl)

UNIT –III: SEX DETERMINATION: (11 L)

1. Sex determination: Discovery of sex chromosomes,

- 2. Chromosomal theory of sex determination.
 - i. Sex determination in Animals (XX,XY) (Drosophila)
 - ii. Sex determination in insects (XO-XX),
 - iii.Sex determination in Birds (ZW-ZZ method),
 - iv. Sex determination in Plants (Asparagus).
- 3. Linkage: Definitions, significance, Coupling and repulsion hypothesis.

UNIT –IV: SEX LINKED INHERITANCE: (12 L)

- 1. Sex linked inheritance: Definition classification (x-linked, y-linked and xy-linked)
 - a) Sex linked inheritance in Drosophila (White eye colour)
 - b) Sex linked inheritance in Man (Hemophilia, colour blindness and hypertrochosis
 - c) Inheritance bobbed bristles in Drosophila
- 2. Gene related diseases: Phenylketonuria (PKU), Alkaptonuria

(AKU) and Albinism.

- 3. Syndromes in Man (Autosomal and sex chromosomal syndromes).
 - i) Down's syndrome
 - ii) Klinfelter's Syndrome.

References:

- Alberts, B. Bray, D. Lewis, J. Raff, M. Roberts, K. and Watson, J. D. 1989. Molecular Biology (Ed.) Garland Publishing Inc. New York.
- Atherly, A. G., Girton, J. R. and McDonald, J. F. 1999. The Science of Genetics. Saunders College USA.
- 3. Burnham, C. R. 1962. Discussions in Cytogenetics, Burgess Publishing Co., Minnesota.
- Busch. H. and Rothblum, L. 1982 Volume X. The cell nucleus: DNA part A, Academic Press.
- 5. Hartl, D. L. and Jones E. W. 1998. Genetics: Principles and Analysis (4ih Ed.)
- 6. Jones and Barew Publishers, Massachusetts, USA.
- 7. Khush, G. S. 1973. Cytogenetics of Aneuploids, Academic Press, New York, London.
- Karp, G. 1999. Cell and Molecular Biology; Concepts and Experiments, John Wiley and Sons Inc. USA.

(AUTONOMOUS)

B. Sc. First Year Semester – II BOTANY

Practical Paper-VI: Practical based on theory papers - IV& V					
Periods – 45	Maximum Marks – 50	Credits: 02	Course code: U-BOT-262		

Course outcomes

- 1) Students are able to stand in clinic as genetics services.
- 2) Students identify the different types of genetics disorder.
- 3) Students Prepare independently permanent slides.
- **Practical 1:** Study of permanent tissues (Mechanical and Complex) with the help of Permanent slides/models/ Charts/photocopies.
- **Practical 2:** Study of T.S. of Anther and types of ovule with the help of Permanent slides/models/ charts/photocopies.
- Practical 3: Preparation of double stained permanent slides of Sunflower Stem.
- Practical 4: Preparation of double stained permanent slides of Maize Stem.
- **Practical 5-10:** Problems based on monohybrid/Dihybrid ratio; 9:7//12:3:1/15:1 and collaborator gene.
- Practical 11-12: Problems based on sex-linked inheritance.

Practical 13-14: Botanical excursions (one long excursion is compulsory)

SKELETON OF QUESTION PAPER B. Sc. First Year

Semester – I & II

Theory Paper-I, II, III and IV Time: 1.30 hours	Maximum Marks: 30
Note: (i) Attempt all questions. (ii) Draw neat and well labeled diagrams wherever necessary.	
Q1. Attempt all of the following (Each 3 marks)	12
a)	
b) c)	
d) Q2. Attempt any ONE of the following	08
a) b)	
Q3. Attempt any ONE of the following	10

- Q3. Attempt any ONE of the following
 - a)
 - b)

(Autonomous)

B.Sc.I PRACTICAL EXAMINATION IN BOTANY

SEE WINTER/SUMMER

Time: Three Hours	Maximum Marks: 30		
Note: - (i) Attempt all questions.			
(ii) Draw neat and well labeled diagrams wherever necessary.			
Q. 1. Long answer type question.	10		
Q. 2. Long answer type question.	10		
Q. 3. Spotting: (02 spots)	05		
Q. 4. Viva- Voce.	05		

S.N.Shinde Chairman Board of Studies in Botany Rajarshi Shahu Mahavidyalaya (Autonomous), Latur